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Overview 

Map: 

Wikimedia Commons 

• Machine Protection 

• FLASH 

• Transport of dark 

current from the gun 

• FERMI@Elettra 

• Demagnetization of 

permanent magnets 

• MPS instrumentation 

• RADFET online 

dosimetry 

• Beam loss position 

monitors 

(Cherenkov fibers) 
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Machine Protection 
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What is Machine Protection? 

Machine protection is the sum of all measures 

that protect an accelerator and its infrastructure from the beam. 
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• Machine Protection System 

– Interlock on components (magnets, screens, ...) 

– Monitoring of the beam (beam loss monitors, charge 

monitors, BPMs, ...) 

– Mitigation (inform the operator, reduce repetition rate, fire 

abort kickers, stop beam production, ...) 

 

• Collimators, absorbers 

• Shielding 

 

• Physics (matching, collective effects, ...) 

• Robust systems+software (feedbacks, LLRF, controls, ...) 

• Safe procedures (switch on, change beam energy, ramp to full 

power, ...) 

 



Average Electron Beam Powers 

Normal conducting 

• FERMI@Elettra 1.3 GeV 10–50 Hz 7–60 W 

• SACLA 7 GeV 10–60 Hz 18–140 W 

• LCLS 15 GeV 120 Hz 8–440 W 
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Photo: Michael J. Linden 

Superconducting 

• FLASH 1.3 GeV 1–3 MHz pulsed 10 W – 22 kW 

• European XFEL 17.5 GeV 4.5 MHz pulsed >500 kW 

• Berkeley NGLS 2 GeV 1 MHz CW 600 kW 

Photo: DESY 

Energy recovery linacs 

• NovoFEL 12 MeV 5.6–22 MHz CW 15–60 kW 

• Jlab FEL 200 MeV 75 MHz CW >1 MW 

• Future ERLs 5 GeV 1.3 GHz CW 500 MW 



Hazards 

Local loss power (W) Effects 

100 — 1000 Thermal/mechanical damage 

10 — 100 Mechanical failure of flange connections 

01 — 100 Activation of components 

01 — 100 
Radiation damage to electronics, optical 

components, &c. 

1 — 10 Excessive cryogenic load, quenches 

0.01 — 0.100 Demagnetization of permanent magnets 
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FLASH 
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Dark Current Transport 
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FLASH — Free-Electron Laser in Hamburg 

127 MeV 380–450 MeV 

up to 1 GeV 

5 MeV 

SASE free-electron laser, down to 6.5 nm 
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Radioactivation by Dark Current 

Dark current: all charge carriers 

emitted from a device or structure 

unintentionally 

 by field emission from cavities main source 

at FLASH: 

RF gun 

~160 µA 
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The FLASH RF Gun 

• Normal conducting 1½ cell 

copper cavity 

• Exchangeable photocathode 

with high quantum efficiency 

rf 

wave 
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Field Emitters in the RF Gun Cavity 

field map courtesy of Jacek Sekutowicz 

field amplitude on 

photocathode: 

42 MV/m 

higher field 

amplitudes: 

44—54 MV/m 
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Modelling of Dark Current Emission 

maximum field on cathode 

photo- 

emission 

(bunches) 

field 

emission 

(dark current) 

photocathode 

plug surface 

backplane 

plug border 

Fowler-Nordheim 

field emission 

model 
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Dark Current Transport in the RF Gun Cavity 

Tracking of dark current from emitter surfaces 

(with enhanced Astra code for complex 3D geometries) 
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Transmission to ACC1 

Emitter all ≥ 1 MeV/c ≥ 2 MeV/c 

A Photocathode 20.99 20.64 19.61 

B Plug surface 1.17 0.85 << 0.01 

C Plug border 0.07 0 0 

D Backplane border 0.41 0 0 

E Iris upstream 0 0 0 

F Iris downstream 0 0 0 

G Cavity exit 0 0 0 

Percentage of particles 

transported to ACC1 

(2.6 m from cathode) 
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Before & After ACC1 

ACC1 
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Overview 

Location of major 

dark current losses: 

• behind rf gun 

• bunch compressor 2 

• bunch compressor 3 

• transverse collimators 

 

 

 

Simulation parameters: 

• final beam energy: 

980 MeV 

• ACC1 rf phase: 

8  off-crest 

• ACC2—3 rf phase: 

20  off-crest  

30 W 72 W 29 W 43 W 2 W dark current power deposition 

(10 Hz, 800 µs pulse length) 



FERMI@Elettra 
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Undulator Protection 
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FERMI@Elettra 

Energy 

Bunch 

Charge 

Repetition 

Rate 

Beam 

Power 

Typical 1.2 GeV 500 pC 10 Hz 6 W 

Design 1.5 GeV 1 nC 50 Hz 75 W 
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Demagnetization of Permanent Magnets 
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(Nd2Fe14B magnets, 2 GeV electrons) 

Teruhiko Bizen – “Brief Review of the 

Approaches to Elucidate the Mechanism of 

the Radiation-induced Demagnetization” 

(ERL workshop 2011, Tsukuba, Japan) 

• FELs rely on precision magnetic 

fields 

• Permanent magnets lose magnetic 

field under irradiation with high 

energy electron beams 

• Various magnetic materials behave 

differently 

Skupin et al., “Undulator 
demagnetization due to radiation 
losses at FLASH”, Proc. EPAC 2008, 
pp. 2308–2310 



Demagnetization of Permanent Magnets 

• FELs rely on precision magnetic 

fields 

• Permanent magnets lose magnetic 

field under irradiation with high 

energy electron beams 

• Various magnetic materials behave 

differently 
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Skupin et al., “Undulator 
demagnetization due to radiation 
losses at FLASH”, Proc. EPAC 2008, 
pp. 2308–2310 
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FLUKA beam loss simulation 

(FLASH, 1 bunch, 10 Hz) 

Can demagnetization be 

compensated by undulator 

tuning (opening gaps)? 



Field Loss of a PETRA-II Undulator 
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P. Vagin et al., “Commissioning experience with 

insertion devices at PETRA III”, SR2010, Novosibirsk, 

Russia. 



Demagnetization and Phase Error 

Example: FERMI@Elettra FEL-2, second stage radiator 

66 periods of 3.48 cm 
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Undulator Field 

∆B/B = 5% 

2% 

1% 

Phase Error 

(Electrons—FEL radiation) 



FERMI@Elettra 

Ionization Chamber 

Beam Loss Monitors (BLMs) 
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FERMI@Elettra 

Cherenkov Fiber Beam Loss 

Position Monitors (BLPMs) 
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FERMI@Elettra 

RADFET Online Dosimetry System 
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Online Solid-State Dosimetry 

27 
L. Fröhlich, K. Casarin, E. Quai, et al., “Online monitoring of absorbed dose in undulator magnets with RADFET 

dosimeters at FERMI@Elettra”, Nucl. Instr. & Meth. A (2012), http://dx.doi.org/10.1016/j.nima.2012.11.021 



P-channel MOSFET 

− − − − − 

+ + + + + 
− − − − − 

negative gate potential  conductive inversion layer 

SiO2 
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P-channel MOSFET 

− − − − − 

+ + + + + 
− − − − − 

ionizing radiation  stationary charges in insulation layer 

ionizing radiation 

+ + + + + 

+   +   + 
−   −   − 

SiO2 
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● REM Oxford Ltd. RADFET RFT-300-CC10G1 

● Chip contains 2 p-channel MOSFETs with 300 nm 

insulator layer 

RADFET Dosimeters 

SiO2 SiO2 

exposure 

“zero bias” 

read-out 

Track voltage for constant current 

(490 µA) between source and drain 

30 



DOSFET-L01 
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Dosimeter Reader 



4 RADFETs per undulator 
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Installation Overview 



Dose Histories 

upstream bottom 

upstream top 

downstream top 

downstream bottom 
First undulator of 

FEL-1: 
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Beam Loss Position Monitor 
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“Cherenkov Fiber” 

 

D. Di Giovenale, L. Catani, L. Fröhlich, “A read-out system for online monitoring of intensity 

and position of beam losses in electron linacs”, Nucl. Instr. & Meth. A, 665 (2011), 33–39. 



Beam Loss Position Monitor (BLPM) 

250 MS/s ADC  longitudinal resolution ~50 cm 
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“Cherenkov Fiber” 
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Undulator Cross Section 



● Array of avalanche photodiodes 

(APDs) connected in parallel 

● Reverse bias  photon causes APD 

breakdown 

● Photomultiplier-like gain 

● Dynamic range limited by number of 

APDs 

● Rise time: some 100 ps 

● Hamamatsu S10362-11-050U: 

400 APDs at ~70 V reverse bias 

 

Multi-pixel Photon Counters (MPPCs) 

10 ns/div. 
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Modular Frontend Electronics 
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Signal Processing 

deconvolution 

MPPC output signal 

number of photodiode 

breakdowns 
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Viewer Application 
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Dose Histories 

upstream bottom 

upstream top 

downstream top 

downstream bottom 
First undulator of 

FEL-1: 
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Thanks for your interest. 


